Model-based fault-tolerant control to guarantee the performance of a hybrid wind-diesel power system in a microgrid configuration uri icon

Abstract

  • This paper presents a comparison of two different adaptive control schemes for improving the performance of a hybrid wind-diesel power system in an islanded microgrid configuration against the baseline controller, IEEE type 1 automatic voltage regulator (AVR). The first scheme uses a model reference adaptive controller (MRAC) with a proportional-integral-derivative (PID) controller tuned by a genetic algorithm (GA) to control the speed of the diesel engine (DE) for regulating the frequency of the power system and uses a classical MRAC for controlling the voltage amplitude of the synchronous machine (SM). The second scheme uses a MRAC with a PID controller tuned by a GA to control the speed of the DE, and a MRAC with an artificial neural network (ANN) and a PID controller tuned by a GA for controlling the voltage amplitude of the SM. Different operating conditions of the microgrid and fault scenarios in the diesel engine generator (DEG) were tested: 1) decrease in the performance of the diesel engine actuator (40% and 80%), 2) sudden connection of 0.5 MW load, and 3) a 3-phase fault with duration of 0.5 seconds. Dynamic models of the microgrid components are presented in detail and the proposed microgrid and its faulttolerant control (FTC) are implemented and tested in the Simpower Systems of MATLAB/Simulink® simulation environment. The simulation results showed that the use of ANNs in combination with model-based adaptive controllers improves the FTC system performance in comparison with the baseline controller. © 2013 The Authors. Published by Elsevier B.V.

Publication date

  • January 1, 2013