Feature characterization in iris recognition with stochastic autoregressive models Chapter in Scopus uri icon

Abstract

  • Iris recognition is a reliable technique for identification of people. A typical iris recognition system is composed of four phases: image acquisition and preprocessing, iris localization and extraction, iris features characterization, and comparison and matching. We are introducing stochastic autoregressive with exogenous inputs models for the features characterization step. Every model is learned from data. In the comparison and matching step, data taken from iris sample are substituted into every model and residuals are generated. A decision is taken based on a threshold calculated experimentally. A successful rate of identifications for UBIRIS and MILES databases shows potential applications. © Springer-Verlag Berlin Heidelberg 2006.

Publication date

  • January 1, 2006