Optimal sampling for feature extraction in iris recognition systems Chapter in Scopus uri icon

Abstract

  • Iris recognition is a method used to identify people based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: (1) image acquisition and preprocessing, (2) iris localization and extraction, (3) iris features characterization, and (4) comparison and matching. A novel contribution in the step of characterization of iris features is introduced by using a Hammersley's sampling algorithm and accumulated histograms. Histograms are computed with data coming from sampled sub-images of iris. The optimal number and dimensions of samples is obtained by the simulated annealing algorithm. For the last step, couples of accumulated histograms iris samples are compared and a decision of acceptance is taken based on an experimental threshold. We tested our ideas with UBIRIS database; for clean eye iris databases we got excellent results. © Springer-Verlag Berlin Heidelberg 2006.

Publication date

  • December 1, 2006