Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling Chapter in Scopus uri icon

Abstract

  • This paper introduces a hybrid algorithm that combines local search and constraint satisfaction techniques with memetic algorithms for solving Course Timetabling hard problems. These problems require assigning a set of courses to a predetermined finite number of classrooms and periods of time, complying with a complete set of hard constraints while maximizing the consistency with a set of preferences (soft constraints). The algorithm works in a three-stage sequence: first, it creates an initial population of approximations to the solution by partitioning the variables that represent the courses and solving each partition as a constraint-satisfaction problem; second, it reduces the number of remaining hard and soft constraint violations applying a memetic algorithm; and finally, it obtains a complete and fully consistent solution by locally searching around the best memetic solution. The approach produces competitive results, always getting feasible solutions with a reduced number of soft constraints inconsistencies, when compared against the methods running independently. © 2009 Springer-Verlag Berlin Heidelberg.

Publication date

  • December 1, 2009