Microbiological and toxicological effects of Perla black bean (Phaseolus vulgaris L.) extracts: In vitro and in vivo studies Academic Article in Scopus uri icon

Abstract

  • We investigated the microbiological and toxicological effects of three Perla black bean extracts on the growth and culture of selected pathogenic microorganisms, the toxicity over Vero cell lines and an in vivo rat model. Three different solvents were used to obtain Perla black bean extracts. All three Perla black bean extracts were tested for antibacterial and antiparasitic activity and further analysed for intrinsic cytotoxicity (IC50). Methanol Perla black bean extract was used for acute toxicity test in rats, with the up-and-down doping method. All Perla black bean extracts inhibited bacterial growth. Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis and Listeria monocytogenes showed inhibition, while Escherichia coli and Enterobacter aerogenes did not. Acidified water and acetic acid Perla black bean extract were tested in parasites. The best IC50 was observed for Giardia lamblia, while higher concentrations were active against Entamoeba histolytica and Trichomonas vaginalis. The Vero cells toxicity levels (IC 50) for methanol, acidified water and acetic acid Perla black bean extract were [mean ± S.D. (95% CI)]: 275 ± 6.2 (267.9-282.0), 390 ± 4.6 (384.8-395.2) and 209 ± 3.39 (205.6-212.4) ¿g/ml, respectively. In vivo acute toxicity assays did not show changes in absolute organ weights, gross and histological examinations of selected tissues or functional tests. The acetic acid and methanol Perla black bean extract proved to exhibit strong antibacterial activity and the acidified water Perla black bean extract exerted parasiticidal effects against Giardia lamblia, Entamoeba hystolitica and Trichomonas vaginalis. The three Perla black bean extracts assayed over Vero cells showed very low toxicity and the methanol Perla black bean extract in vivo did not cause toxicity. © 2008 Nordic Pharmacological Society.

Publication date

  • February 1, 2009