Forming force and temperature effects on single point incremental forming of polyvinylchloride
                 
        Academic Article in Scopus
                     
                
        
            
    
    
     
        
    
         
     
    
    -  
- Overview
-  
- Identity
-  
- Additional document info
-  
- View All
-  
Overview
        
            
                    abstract   
                
    - 
    	©2014 Elsevier B.V. All rights reserved.Incremental Sheet Forming (ISF) is a technology that allows producing highly customized products at a reasonable manufacturing cost, and Single point incremental forming (SPIF) is one of the simplest ISF processes. In this sense, recent research works have revealed an increasing interest in forming thermoplastic materials by ISF. The present paper focuses on determining the influence of the main process parameters, i.e. the step down, spindle speed, feed rate, tool diameter and sheet thickness, on the maximum forming force. Maximum depth has been analyzed as a formability indicator and surface roughness has been also addressed. The results show a significant effect of the spindle speed in the ISF process of polymeric materials, not only on the maximum forming force but also on its formability, by means of the maximum depth reached, and on the surface roughness achieved. This is a consequent of the triggered increment of temperature obtained due to the friction between the tool and the sheet blank, as far as temperature variation is supposed to be the main factor causing the variation of the mechanical properties of thermoplastic polymers. The material used in this research work was polyvinylchloride (PVC), which becomes rubber-like with the increase of temperature as a consequence of its viscoelastic behaviour. 
    
status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    start page   
                
             
            
                    end page   
                
             
            
                    volume