abstract
- © 2015 Vyacheslav V. Kalashnikov et al.The aim of this paper is threefold: first, it formulates the natural gas cash-out problem as a bilevel optimal control problem (BOCP); second, it provides interesting theoretical results about Pontryagin-type optimality conditions for a general BOCP where the upper level boasts a Mayer-type cost function and pure state constraints, while the lower level is a finite-dimensional mixed-integer programming problem with exactly one binary variable; and third, it applies these theoretical results in order to find possible local minimizers of the natural gas cash-out problem.