AcademicArticleSCO_85014567977 uri icon

abstract

  • © 2017 American Chemical Society. The production and use of fossil fuels have caused a drastic increase in greenhouse gas emissions, which is associated directly with the global warming problem. Biofuels and carbon capture through forest plantations are interesting alternatives to address this problem. This paper presents an optimization model for the design of an integrated energy system for producing fuels and biofuels considering the interaction with eco-industries able to capture emissions from biorefineries and refineries and receive a monetary benefit. The proposed mathematical model takes into account the availability of biomass, the production of oil, and a set of existing biorefineries and refineries as well as the possibility to install new eco-industries. The mathematical approach was applied to a nationwide case study for Mexico, considering the creation of new jobs, overall emissions, and net profit as objectives. The results are shown in a Pareto curve, which is useful for making decisions about the interactions between these industries as well as determining the configuration of the supply chain to satisfy the fuel demands.