Viscoelastic properties of tablets from Osborne fractions, pentosans, flour and bread evaluated by creep tests
                 
        Academic Article in Scopus
                     
                
        
            
    
    
     
        
    
         
     
    
    -  
- Overview
-  
- Identity
-  
- Additional document info
-  
- View All
-  
Overview
        
            
                    abstract   
                
    - 
    	© 2017 Anayansi Escalante-Aburto et al., published by De Gruyter Open 2017.Little attention has been given to the influence of non-gluten components on the viscoelastic properties of wheat flour dough, bread making process and their products. The aim of this study was to evaluate by creep tests the viscoelastic properties of tablets manufactured from Osborne solubility fractions (globulins, gliadins, glutenins, albumins and residue), pentosans, flour and bread. Hard and soft wheat cultivars were used to prepare the reconstituted tablets. Sintered tablets (except flour and bread) showed similar values to those obtained from the sum of the regression coefficients of the fractions. Gliadins and albumins accounted for about 54% of the total elasticity. Gliadins contributed with almost half of the total viscosity (45.7%), and showed the highest value for the viscosity coefficient of the viscous element. When the effect of dilution was evaluated, the residue showed the highest instantaneous elastic modulus (788.2 MPa). Retardation times of the first element (¿1 ~ 3.5 s) were about 10 times lower than the second element (¿2 ~ 39.3 s). The analysis of compliance of data corrected by protein content in flour showed that the residue fraction presented the highest values. An important contribution of non-gluten components (starch, albumins and globulins) on the viscoelastic performance of sintered tablets from Osborne fractions, flour and bread was found. 
    
status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    start page   
                
             
            
                    end page   
                
             
            
                    volume