Whole genome sequencing reveals widespread distribution of typhoidal toxin genes and VirB/D4 plasmids in bovine-associated nontyphoidal Salmonella
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2018 The Author(s).Nontyphoidal Salmonella (NTS) is a common pathogen in food-producing animals and a public health concern worldwide. Various NTS serovars may be present in apparently healthy animals. This could result in carcass contamination during the slaughter process leading to human exposure. While most genomic research has focused on Salmonella pathogenesis, little is known on the factors associated with subclinical infections and environmental persistence. We report here the widespread distribution of typhoidal toxin genes (i. e. the cdtB islet, hlyE, taiA), among NTS strains from a beef slaughter operation (n = 39) and from epidemiologically unconnected ground beef (n = 20). These genes were present in 76% of the strains, regardless of serovar, isolation source or geographical location. Moreover, strains that predominated in the slaughterhouse carry plasmid-borne type IV secretion systems (T4SS), which have been linked to persistent infections in numerous pathogens. Population genomics supports clonal dissemination of NTS along the food production chain, highlighting its role as reservoir of genetic variability in the environment. Overall, the study provides a thorough characterization of serovar diversity and genomic features of beef-associated NTS in Mexico. Furthermore, it reveals how common genetic factors could partially explain the emergence and persistence of certain NTS serovars in the beef industry.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional document info
has global citation frequency
volume