Effect of jet-cooking and hydrolyses with amylases on the physicochemical and in vitro digestion performance of whole chickpea flours Academic Article in Scopus uri icon

abstract

  • © 2019 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd on behalf of Institute of Food, Science and Technology (IFSTTF).Whole chickpea flours were subjected to a pilot plant process aimed to understand the effects of jet-cooking followed by ¿-amylase or isoamylase hydrolyses in terms of physicochemical and the in vitro digestion performance of starch and proteins. Jet-cooked flours generated lower viscosities and had lower gelatinisation temperatures when compared with their raw counterparts; furthermore, the amylolytic enzymes improved both starch and protein in vitro digestion rates (HI of 85.33 and relative digestion of 88.92%, respectively) that were strongly correlated with the amylose content (P < 0.05). By means of principal component analyses (PCA) is concluded that the changes in granular architecture, reflected by lower ¿H values and new linear structures after isoamylase hydrolysis (treated = 44.36% vs. raw = 26.43%) as well as protein denaturation promoted similar glycemic responses in raw flours compared with jet-cooked counterparts (83.12 and 84.77, respectively). The combination of a thermal-enzymatic method could be a useful alternative to produce novel pulse flours.

publication date

  • February 1, 2020