Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties
Academic Article in Scopus
-
- Overview
-
- Identity
-
- Additional document info
-
- View All
-
Overview
abstract
-
© Materials Research Society 2020.Poly 4-mercaptophenyl methacrylate-carbon nano-onions ((PMPMA-CNOs = f-CNOs) were reinforced with polycaprolactone (PCL) to produce PCL/f-CNO nanocomposites using probe sonication. The physicochemical properties of nanocomposites were systematically studied to analyze cell viability and proliferation. In vitro cytotoxicity of PCL/f-CNO nanocomposites was measured with osteoblast cells, and improved cell viability was observed. The cytotoxicity of f-CNOs to osteoblasts was dose-dependent, and PCL/f-CNO (0.5 wt%) nanocomposites showed more than 90% of viability as compared to pristine PCL. Similarly, PCL/f-CNO (0.5 wt%) nanocomposites showed substantial enhancement in mechanical properties. The yield strength, tensile strength, Young modulus, elastic modulus, and fracture toughness were also upgraded at high content of f-CNOs (0.5 wt%). The concentration of f-CNOs considerably influenced the strengthening of PCL/f-CNO nanocomposites, which shows its degree of colloidal dispersion stability and extent of polymer wrapping within the PCL matrix. Nevertheless, these nontoxic PCL/f-CNO nanocomposites can be used as promising biomaterials for orthopedic applications.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume