abstract
- © 2020 Elsevier Inc.Several genes are significantly mutated in breast cancer but only a small percentage of mutations are well-known to contribute to cancer development. FASN is involved in de novo lipogenesis and the regulation of ER¿ signaling. However, the effect of genetic mutations affecting FASN in breast cancer has not thoroughly studied. Therefore, we used the CRISPR/Cas9 system to edit the FASN locus in MCF-7 cells and evaluated its biological effect. We obtained four clones carrying mutations and frameshifts in the acyl-transferase domain of FASN. We found that clones had reduced proliferation, migration, viability, and showed alterations in cell cycle profiles. RNA-Seq analysis demonstrates that a lack of fully functional FASN may have a more significant role in proliferation-related genes than in lipid metabolism. We conclude that functional knockouts in FASN contributes to decrease the proliferation and migration of breast cancer cells contrary to point mutations in breast cancer patients.