Empirical and Modeling Approach for Environmental Indoor RF-EMF Assessment in Complex High-Node Density Scenarios: Public Shopping Malls Case Study
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2013 IEEE.This work provides an intensive and comprehensive in-depth study from an empirical and modeling approach of the environmental radiofrequency electromagnetic fields (RF-EMF) radiation exposure in public shopping malls, as an example of an indoor high-node user density context aware environment, where multiple wireless communication systems coexist. For that purpose, current personal mobile communications (2G-5G FR 1) as well as Wi-Fi services (IEEE 802.11n/ac) have been precisely analyzed in order to provide clear RF-EMF assessment insight and to verify compliance with established regulation limits. In this sense, a complete measurements campaign has been performed in different countries, with frequency-selective exposimeters (PEMs), providing real empirical datasets for statistical analysis and allowing discussion and comparison regarding current health effects and safety issues between some of the most common RF-EMF exposure safety standards: ICNIRP 2020 (Spain), IEEE 2019 (Mexico) and a more restrictive regulation (Poland). In addition, environmental RF-EMF exposure assessment simulation results, in terms of spatial E-field characterization and Cumulative Distribution Function (CDF) probabilities, have been provided for challenging incremental high-node user dense scenarios in worst case conditions, by means of a deterministic in-house 3D Ray-Launching (3D-RL) RF-EMF safety simulation technique, showing good agreement with the experimental measurements. Finally, discussion highlighting the contribution and effects of the coexistence of multiple heterogenous networks and services for the environmental RF-EMF radiation exposure assessment has been included, showing that for all measured results and simulated cases, the obtained E-Field levels are well below the exposure limits established in the internationally accepted standards and guidelines. In consequence, the obtained results and the presented methodology could become a starting point to stablish the RF-EMF assessment basis of future complex heterogeneous 5G FR 2 developments on the millimeter wave (mmWave) frequency range, where massive high-node user density networks are expected.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume