Dissolution and Aggregation of Metal Oxide Nanoparticles in Root Exudates and Soil Leachate: Implications for Nanoagrochemical Application
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2021 American Chemical Society.Knowledge of dissolution, aggregation, and stability of nanoagrochemicals in root exudates (RE) and soil leachate will contribute to improving delivery mechanisms, transport in plants, and bioavailability. We characterized aggregation, stability, and dissolution of four nanoparticles (NPs) in soybean RE and soil leachate: nano-CeO2, nano-Mn3O4, nano-Cu(OH)2, and nano-MoO3. Aggregation differed considerably in different media. In RE, nano-Cu(OH)2, and nano-MoO3 increased their aggregate size for 5 days; their mean sizes increased from 518 ± 43 nm to 938 ± 32 nm, and from 372 ± 14 nm to 690 ± 65 nm, respectively. Conversely, nano-CeO2 and nano-Mn3O4 disaggregated in RE with time, decreasing from 289 ± 5 nm to 129 ± 10 nm, and from 761 ± 58 nm to 143 ± 18 nm, respectively. Organic acids in RE and soil leachate can be adsorbed onto particle surfaces, influencing aggregation. Charge of the four NPs was negative in contact with RE and soil leachate, due to organic matter present in RE and soil leachate. Dissolution in RE after 6 days was 38%, 1.2%, 0.5%, and <0.1% of the elemental content of MoO3, Cu(OH)2, Mn3O4, and CeO2 NPs. Thus, the bioavailability and efficiency of delivery of the NPs or their active ingredients will be substantially modified soon after they are in contact with RE or soil leachate.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional document info
has global citation frequency
start page
end page
volume