Genetic Exchange of Lung-Derived Exosome to Brain Causing Neuronal Changes on COVID-19 Infection
                 
        Academic Article in Scopus
                    
                
        
            
    
    
     
        
    
         
     
    
    -  
 
            - Overview
 
            -  
 
            - Identity
 
            -  
 
            - Additional document info
 
            -  
 
    - View All
 
    -  
 
        
        
            Overview
        
            
                    abstract   
                
    - 
    	© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.The pandemic of novel coronavirus 2 (SARS-CoV-2) has made global chaos for normal human living. Despite common COVID-19 symptoms, variability in clinical phenotypes was reported worldwide. Reports on SARS-CoV-2 suggest causing neurological manifestation. In addition, the susceptibility of SARS-CoV-2 in patients with neurodegenerative diseases and its complexity are largely unclear. Here, we aimed to demonstrate the possible transport of exosome from SARS-CoV-2¿infected lungs to the brain regions associated with neurodegenerative diseases using multiple transcriptome datasets of SARS-CoV-2¿infected lungs, RNA profiles from lung exosome, and gene expression profiles of the human brain. Upon transport, the transcription factors localized in the exosome regulate genes at lateral substantia nigra, medial substantia nigra, and superior frontal gyrus regions of Parkinson¿s disease (PD) and frontal cortex, hippocampus, and temporal cortex of Alzheimer¿s disease (AD). On SARS-CoV-2 infection, BCL3, JUND, MXD1, IRF2, IRF9, and STAT1 transcription factors in the exosomes influence the neuronal gene regulatory network and accelerate neurodegeneration. STAT1 transcription factor regulates 64 PD genes at lateral substantia nigra, 65 at superior frontal gyrus, and 19 at medial substantia nigra. Similarly, in AD, STAT1 regulates 74 AD genes at the temporal cortex, 40 genes at the hippocampus, and 16 genes at the frontal cortex. We further demonstrate that dysregulated neuronal genes showed involvement in immune response, signal transduction, apoptosis, and stress response process. In conclusion, SARS-CoV-2 may dysregulate neuronal gene regulatory network through exosomes that attenuate disease severity of neurodegeneration. 
    
 
                
             
            
                    
                
             
            
                    status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
            
                    PubMed ID   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    start page   
                
             
            
                    end page   
                
             
            
                    volume