Immune milieu and genomic alterations set the triple-negative breast cancer immunomodulatory subtype tumor behavior Academic Article in Scopus uri icon

abstract

  • © 2021 by the author. Licensee MDPI, Basel, Switzerland.Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease. Seven subtypes have been described based on gene expression patterns. Herein, we characterized the tumor biology and clinical behavior of the immunomodulatory (IM) subtype. Methods: Formalin-fixed paraffin-embedded tumor samples from 68 high-risk (stage III-IV) TNBC patients were ana-lyzed through microarrays, immunohistochemistry, and DNA sequencing. Results: The IM subtype was identified in 24% of TNBC tumor samples and characterized by a higher intratumoral (intT) and stromal (strml) infiltration of FOXP3+ TILs (Treg) compared with non-IM subtypes. Further, PD-L1+ (>1%) expression was significantly higher, as well as CTLA-4+ intT and strml expression in the IM subtype. Differential expression and gene set enrichment analysis identified biological pro-cesses associated with the immune system. Pathway analysis revealed enrichment of the ß-catenin signaling pathway. The non-coding analysis led to seven Long Intergenic Non-Protein Coding RNAs (lincRNAs) (6 up-regulated and 1 down-regulated) that were associated with a favorable prognosis in the TNBC-IM subtype. The DNA sequencing highlighted two genes relevant to immune system responses: CTNNB1 (Catenin ß-1) and IDH1. Conclusion: the IM subtype showed a distinct immune microenvironment, as well as subtype-specific genomic alterations. Characterizing TNBC at a molecular and transcriptomic level might guide immune-based therapy in this subgroup of patients.

publication date

  • December 1, 2021