Photo-catalytic and biomedical applications of one-step, plant extract-mediated green-synthesized cobalt oxide nanoparticles
Academic Article in Scopus
-
- Overview
-
- Identity
-
- Additional document info
-
- View All
-
Overview
abstract
-
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.In the present work, for the first time, green chemically synthesized and stabilized Co3O4 nanoparticles were employed for catalytic conversion of isopropyl alcohol to acetone by dehydrogenation of IPA. Plant extract of Rosmarinus officinalis was used as a reducing and stabilizing agent for this synthesis. The biosynthesized Co3O4 nanoparticles were annealed at 450¿ followed by their physiochemical characterizations through XRD, SEM, AFM, and FTIR. Size distribution information collected through XRD and AFM back each other, and it was found to be 6.5 nm, having the highest number of nanoparticles in this size range. While SEM confirms the self-arranging property of synthesized nanoparticles due to their magnetic nature, furthermore, the biogenic Co3O4 nanoparticles were studied for their catalytic potential to convert isopropyl alcohol to acetone with the help of a UV¿Visible spectrophotometer. The highest photocatalytic conversion of 99% was obtained in time period of 48 s. For the first time ever, nanoparticles were used for 5 cycles to evaluate their recyclable nature and conversion fell from 99 to 86% and the end of the 5th cycle. Later anti-bacterial activity against 3 Gram-positive and 3 Gram-negative strains gave the highest inhibition value of 99% against Streptococcus pneumoniae at 500 µg/mL. Finally, a cytotoxicity study on synthesized nanomaterials was carried out by exposing freshly drawn human macrophages to them. It was found that even at the highest concentration of 500 µg/mL, the nanoparticles showed only 28% lysis.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional document info
has global citation frequency
start page
end page
volume