abstract
- © 2023 by the authors.A P0 system is used in hybrid automobiles to improve engine economy and performance. An essential element of the P0 system for effectively transmitting power to the drive train is the belt drive system (BDS). The features of electric machine (EM) and internal combustion engines (ICE) are taken into account by standard energy management systems, such as the equivalent consumption minimization strategy (ECMS). In order to maximize the effectiveness of the P0 system, this work provides a novel formulation of the ECMS, which considers the power loss map of the BDS in addition to the characteristic maps of EM and ICE. A test bench is built up to characterize the BDS, and it is verified using an open-loop Hardware in the Loop (HIL) in the WLTP driving cycle. To find the most appropriate equivalence factors for the ECMS, which would ordinarily be tuned through trial and error, a genetic algorithm (GA) is used. With regard to the standard ECMS, the proposed methodology intends to reduce fuel usage and CO2 emissions. Two belts in BDS were tested in the WLTP to achieve CO2 savings of 1.1 and 0.9 [g/km], indicating the enhancement of system performance by using the BDS power loss maps in ECMS.