abstract
- Controlling an automotive suspension system using an actuator is a complex nonlinear problem that requires both fast and precise solutions in order to achieve optimal performance. In this work, the nonlinear model of a quarter-car active suspension is expressed in terms of a flat output and its derivatives in order to embed the nonlinearities of the system in the flat output. Afterward, a Model Predictive Controller based on the differential flatness derivation (MPC-DF) of the quarter-car is proposed in order to achieve optimal control performance in both passenger comfort and road holding without diminishing the lifespan of the wheel. This formulation results in a linear optimization problem while maintaining the nonlinear behavior of the active suspension system. Afterward, the optimization problem is solved by means of Quadratic Programming (QP), enabling real-time implementation. Simulation results are presented using a realistic road disturbance to show the effectiveness of the proposed control strategy.