abstract
- Bioscorodite crystallization is a promising process for the proper immobilization of arsenic from acidic metallurgical wastewater, and Acidianus brierleyi is an effective archaeon to oxidize Fe(II) and As(III) simultaneously. This paper deals with the development of an experimentally validated mathematical model to gain insight into the simultaneous processes of Fe(II) and As(III) oxidation via microbial cells and the exopolysaccharide (EPS) matrix, As(V) precipitation, and bioscorodite crystallization, which are affected by several factors. After the mathematical structure was proposed, a model fitting was performed, finding global determination coefficients between 0.96 and 0.99 (with p-values < 0.001) for all the variables. The global sensitivity analysis via Monte Carlo simulations allowed us to identify the critical parameters whose sensitivity depends on culture conditions. The model was then implemented to evaluate the effect of cell concentration, Fe(II) and As(III) concentrations (at Fe/As = 1.4), and oxidation rate constants for A. brierleyi and the EPS region, noting that these factors play an important role in the process. Our results showed that the proposed model can be used as a robust simulation platform for the further analysis of the bioscorodite crystallization process under extremophilic conditions.