SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS Academic Article in Scopus uri icon

abstract

  • Supplier selection process plays a vital role in supply chain management and is the most important variable in its success. With increasing environmental considerations, organizations must consider sustainability considerations and economic goals to protect the environment. Furthermore, the destructive effects of disruptions on the supply chain performance of companies have prompted organizational experts to pay special attention to the concept of resilience. This study developed an integrated approach based on the extended version of Multi-Criteria Decision-Making (MCDM) methods in a spherical fuzzy (SFS) environment to address sustainable and resilient IoT supplier selection. In the proposed approach, the main criteria (i.e., resilience, and sustainability) have been used in the supplier selection process. Then, these criteria are weighted using the developed SFS-Best-Worst Method (BWM), which reduces uncertainty in pairwise comparisons. In the next step, the 14 selected IoT suppliers are evaluated and prioritized by applying SFS-mulTi-noRmalization mUltiDistance aSsessmenT (TRUST) that considers a multi-normalization algorithm to reduce subjectivity in normalized data. The results of this study shows that the pollution control and risk-taking sub-criteria are placed in the first and second priorities, respectively. The comparison of the results of the SFS-TRUST with other MCDM methods and sensitivity analysis demonstrates the performance of the proposed approach and its ranking stability in various scenarios.

publication date

  • April 1, 2023