Bilateral image subtraction features for multivariate automated classification of breast cancer risk Academic Article in Scopus uri icon

abstract

  • Early tumor detection is key in reducing breast cancer deaths and screening mammography is the most widely available method for early detection. However, mammogram interpretation is based on human radiologist, whose radiological skills, experience and workload makes radiological interpretation inconsistent. In an attempt to make mammographic interpretation more consistent, computer aided diagnosis (CADx) systems has been introduced. This paper presents an CADx system aimed to automatically triage normal mammograms form suspicious mammograms. The CADx system co-reregister the left and breast images, then extracts image features from the co-registered mammographic bilateral sets. Finally, an optimal logistic multivariate model is generated by means of an evolutionary search engine. In this study, 440 subjects form the DDSM public data sets were used: 44 normal mammograms, 201 malignant mass mammograms, and 195 mammograms with malignant calci cations. The results showed a cross validation accuracy of 0.88 and an area under receiver operating characteristic (AUC) of 0.89 for the calci cations vs. normal mammograms. The optimal mass vs. normal mammograms model obtained an accuracy of 0.85 and an AUC of 0.88. © 2014 SPIE.

publication date

  • January 1, 2014