Elimination of contaminants from cell preparations using aqueous two-phase partitioning
Academic Article in Scopus
-
- Overview
-
- Identity
-
- Additional document info
-
- View All
-
Overview
abstract
-
© 2015 Elsevier B.V. All rights reserved.Contamination by cell debris and non-viable cells is common in cell-based processes. Cell fragments and dead cells can be produced during culture and in purification steps, and often must be eliminated before analyses, subsequent process steps, and/or final application to avoid interference, fouling and reduced product yields. In the present work, the selective elimination of cell debris from CD133+ stem cells by aqueous two-phase system (ATPS) partitioning is demonstrated. Two conventional ATPS systems showed no selectivity, with 100% of both cell debris and CD133+ stem cells partitioning to the top phase of a Ficoll 400,000-dextran 70,000 system and 100% of both debris and CD133+ cells partitioning to the bottom phase of a PEG 8000-dextran 500,000 system. In a novel UCON-dextran 75,000 system, however, 100% of the CD133+ stem cells partitioned to the bottom phase, while non-viable cells, cell debris and other non-mononuclear cells all partitioned to some extent to the top phase, away from the desired CD133+ cells. CD133+ cell viability was at least 98% after ATPS processing. This result suggests that with larger phase ratios or continuous extraction, this or related ATPS systems could remove essentially all cell debris and non-viable cells with cell yield and viability both near 100%. This approach might find application in a wide variety of cell-based technologies.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume