Algebraic and group structure for bipartite anisotropic Ising model on a non-local basis Academic Article in Scopus uri icon

abstract

  • © 2015 World Scientific Publishing Company.Entanglement is considered a basic physical resource for modern quantum applications as Quantum Information and Quantum Computation. Interactions based on specific physical systems able to generate and sustain entanglement are subject to deep research to get understanding and control on it. Atoms, ions or quantum dots are considered key pieces in quantum applications because they are elements in the development toward a scalable spin-based quantum computer through universal and basic quantum operations. Ising model is a type of interaction generating entanglement in quantum systems based on matter. In this work, a general bipartite anisotropic Ising model including an inhomogeneous magnetic field is analyzed in a non-local basis. This model summarizes several particular models presented in literature. When evolution is expressed in the Bell basis, it shows a regular block structure suggesting a SU(2) decomposition. Then, their algebraic properties are analyzed in terms of a set of physical parameters which define their group structure. In particular, finite products of pulses in this interaction are analyzed in terms of SU(4) covering. Thus, evolution denotes remarkable properties, in particular those related potentially with entanglement and control, which give a fruitful arena for further quantum developments and generalization.

publication date

  • October 1, 2015