State-aware re-configuration model for multi-radio wireless mesh networks Academic Article in Scopus uri icon

abstract

  • © 2017 KSII.Joint channel assignment and routing is a well-known problem in multi-radio wireless mesh networks for which optimal configurations is required to optimize the overall throughput and fairness. However, other objectives need to be considered in order to provide a high quality service to network users when it deployed with high traffic dynamic. In this paper, we propose a re-configuration optimization model that optimizes the network throughput in addition to reducing the disruption to the mesh clients¿ traffic due to the re-configuration process. In this multi-objective optimization model, four objective functions are proposed to be minimized namely maximum link-channel utilization, network average contention, channel re-assignment cost, and re-routing cost. The latter two objectives focus on reducing the re-configuration overhead. This is to reduce the amount of disrupted traffic due to the channel switching and path re-routing resulted from applying the new configuration. In order to adapt to traffic dynamics in the network which might be caused by many factors i.e. users¿ mobility, a centralized heuristic re-configuration algorithm called State-Aware Joint Routing and Channel Assignment (SA-JRCA) is proposed in this research based on our re-configuration model. The proposed algorithm re-assigns channels to radios and re-configures flows¿ routes with aim of achieving a tradeoff between maximizing the network throughput and minimizing the re-configuration overhead. The ns-2 simulator is used as simulation tool and various metrics are evaluated. These metrics include channel-link utilization, channel re-assignment cost, re-routing cost, throughput, and delay. Simulation results show the good performance of SA-JRCA in term of packet delivery ratio, aggregated throughput and re-configuration overhead. It also shows higher stability to the traffic variation in comparison with other compared algorithms which suffer from performance degradation when high traffic dynamics is applied.

publication date

  • January 30, 2017