Use of combined observational- and model-derived photochemical indicators to assess the O3-NOx-VOC system sensitivity in urban areas Academic Article in Scopus uri icon

abstract

  • © 2017 by the author.Tropospheric levels of O3 have historically exceeded the official annual Mexican standards within the Monterrey Metropolitan Area (MMA) in NE Mexico. High-frequency and high-precision measurements of tropospheric O3, NOy, NO2, NO, CO, SO2, PM10 and PM2.5 were made at the Obispado monitoring site near the downtown MMA from September 2012 to August 2013. The seasonal cycles of O3 and NOy are driven by changes in meteorology and to a lesser extent by variations in primary emissions. The NOy levels were positively correlated with O3 precursors and inversely correlated with O3 and wind speed. Recorded data were used to assess the O3-Volatile Organic Compounds (VOC)-NOx system's sensitivity through an observational-based approach. The photochemical indicator O3/NOy was derived from measured data during the enhanced O3 production period (12:00-18:00 Central Daylight Time (CDT), GMT-0500). The O3/NOy ratios calculated for this time period showed that the O3 production within the MMA is VOC sensitive. A box model simulation of production rates of HNO3 (PHNO3) and total peroxides (Pperox) carried out for O3 episodes in fall and spring confirmed the VOC sensitivity within the MMA environment. No significant differences were observed in O3/NOy from weekdays to weekends or for PHNO3/Pperox ratios, confirming the limiting role of VOCs in O3 production within the MMA. The ratified photochemical regime observed may allow the environmental authorities to revise and verify the current policies for air quality control within the MMA.

publication date

  • January 1, 2017