UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding
                 
        Academic Article in Scopus 
                     
         
            
    
    
     
        
    
          
      
    
      
            Overview 
              
            Identity 
              
            Additional document info 
              
    View All 
      
 
        
        
            
                 
         
            Overview 
        
            
                    abstract    
                
    
    	© 2017 by the Authors. Previously, we found that phenolic content and antioxidant capacity (AOX) in carrots increased with wounding intensity. It was also reported that UV radiation may trigger the phenylpropanoid metabolism in plant tissues. Here, we determined the combined effect of wounding intensity and UV radiation on phenolic compounds, AOX, and the phenylalanine ammonia-lyase (PAL) activity of carrots. Accordingly, phenolic content, AOX, and PAL activity increased in cut carrots with the duration of UVC radiation, whereas whole carrots showed no increase. Carrot pies showed a higher increase compared to slices and shreds. Phenolics, AOX, and PAL activity also increased in cut carrots exposed to UVA or UVB. The major phenolics were chlorogenic acid and its isomers, ferulic acid, and isocoumarin. The type of UV radiation affected phenolic profiles. Chlorogenic acid was induced by all UV radiations but mostly by UVB and UVC, ferulic acid was induced by all UV lights to comparable levels, while isocoumarin and 4,5-diCQA was induced mainly by UVB and UVC compared to UVA. In general, total phenolics correlated linearly with AOX for all treatments. A reactive oxygen species (ROS) mediated hypothetical mechanism explaining the synergistic effect of wounding and different UV radiation stresses on phenolics accumulation in plants is herein proposed. 
     
                 
              
            
                    
                
              
            
                    status    
                
              
            
                    publication date    
                
              
            
                    published in    
                
              
         
          
        
        
            
                 
         
            Identity 
        
            
                    Digital Object Identifier (DOI)    
                
              
            
                    PubMed ID    
                
              
         
          
        
        
            
                 
         
            Additional document info 
        
            
                    has global citation frequency    
                
              
            
                    volume