Bimetallic Pd-Fe supported on ¿-Al2O3 catalyst used in the ring opening of 2-methylfuran to selective formation of alcohols
                 
        Academic Article in Scopus
                     
                
        
            
    
    
     
        
    
         
     
    
    -  
- Overview
-  
- Identity
-  
- Additional document info
-  
- View All
-  
Overview
        
            
                    abstract   
                
    - 
    	© 2017 Elsevier B.V.This work presents the hydrogenation of 2-methylfuran (2-MF) in gaseous fluid phase into a catalytic reactor in order to obtain products with good properties to be used as biofuel. Bimetallic nanoparticles were obtained by impregnation on Al2O3 from the classic catalytic metals used in hydrogenation reactions such as platinum and palladium, combined with iron, to observe the catalytic activity and the selectivity to form interest biofuel compounds. Pt, Pd, Pt-Fe and Pd-Fe catalysts (with 0.5% wt. metal content) supported on alumina were reduced at 450 °C and tested. At 200 °C, Pt/Al2O3 and Pt-Fe/Al2O3 catalysts presented less than 19% conversion and the main formed product was pentene (90% selectivity). The Pd/Al2O3 catalyst conversion of 2-MF was of 5% at 200 °C, obtaining 1-pentanol and 1-butanol as products, together with a 28% of selectivity. The Pd-Fe/Al2O3 catalyst presented the highest conversion of 2-MF at 200 °C of 31%, the production of alcohols such as 1-pentanol, 2-pentanol and 1-butanol summed a selectivity of 39%. Since the Pd-Fe/Al2O3 catalyst presented the best performance, it was analyzed under high-resolution transmission electron microscopy technique. The HRTEM image revealed the presence of 5 nm size nanoparticles over the alumina, and Pd and Fe oxide nanoparticles were identified measuring the interplanar distances of exposed planes. A FePd3 nanoparticle alloy was also identified, which was the difference in having a greater hydrogenation efficiency for the 2-MF molecule. 
    
status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    start page   
                
             
            
                    end page   
                
             
            
                    volume