Methodology for the development of laboratory-based comprehensive foam model for use in the reservoir simulation of enhanced oil recovery
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
Copyright ©2018 Society of Petroleum Engineers.An integrated methodology is presented for the development of a comprehensive empirical foam model based on tailored laboratory tests and representative numerical simulations that encompass processes of foam generation, coalescence, and shear thinning along with rheological characteristics and associated flow regimes. Steady-state and unsteady-state laboratory experiments of foam floods in a vertical column of sandpack with and without oil at different surfactant concentrations and at varied gas/surfactant-solution injection rates are designed, conducted, and analyzed. The logic and basis of these experiments are provided. Test results from experiments in the presence of oil provide information on the oil-induced foam/lamella coalescence functions. Unsteady-state experiments capture foam-generation and foam-dry-out phenomena, whereas steady-state experiments capture the effects of foam quality, foam velocity, and surfactant concentration. Process-based numerical simulations of these experiments are combined with basic governing analytical relationships of foam flow to provide a methodology for a comprehensive empirical foam model and to uniquely define the model parameters to preserve consistency with simulations of foam-flow processes. A procedure is presented to fully model the effect of surfactant concentration on foam strength and to quantify all concentration-function parameters, and, in particular, epsurf.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume