AcademicArticleSCO_85053048874 uri icon

abstract

  • © 2018 Elsevier Ltd The use of high pressure processing (HPP) for development of stable emulsion-based delivery systems has been recently increased. Under adequate conditions, application of high pressures modifies the functionality of protein and polysaccharide molecules and significantly promotes the emulsifying activities. Application of high pressures also modulates the emulsion microstructure without any destabilization and gelation of protein molecules. The lipid oxidation in HPP-treated emulsions can be accelerated, particularly with higher pressure levels, while the HPP utilization on emulsions in acidic conditions can highly inhibit the growth of spoilage and pathogenic microorganisms. In this study, the effects of HPP on the physicochemical, rheological and antimicrobial properties of emulsion-based delivery systems are reviewed. Physicochemical mechanisms dominant over the destabilization of emulsion systems and knowledge gaps related to the practical exploitations of HPP in the design and manufacture of food-grade colloidal delivery systems are also addressed.