Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry Academic Article in Scopus uri icon

abstract

  • © 2019 American Institute of Chemical EngineersPoultry products are one of the major transmission media of Salmonella enteritidis to humans. A promising alternative to reduce the load of Salmonella in poultry are bacteriophages. Elsewhere, a mixture of six bacteriophages has been used successfully, but large-scale production would be necessary to supply potential poultry market and costs analyses have not been calculated yet. For this, a powerful tool to predict production costs is bioprocess modeling coupled with economic analyses. This work aims to model the scaled-up production of a six bacteriophages mixture based on a laboratory/pilot-scale production using Biosolve Process. For the model construction, a combination of experimental and reported data was applied, in which different production alternatives and the range of 1¿100% of the Colombian poultry market (at broiler's farm and slaughterhouse) were analyzed. Results indicate that the best cost-effective process configuration/scale is to use one bioreactor (156 L) for the six bacteriophages, then a 0.45 ¿m filtration for removal of biomass, and a 0.22 ¿m filtration for sterility; this to supply the 35% of the market size for broiler farms (equivalent to 210 million chickens). This configuration gives a production cost per chicken of US$ 0.02. Additionally, a sensitivity analysis and a theoretical contrast for understanding the impact that titer and recovery have on production scale determined that titer affects the most the cost and requires optimization. The present works serves as a first, and required, approach for the development of phage therapy products that are alternatives to present-day pathogens control strategies.

publication date

  • September 1, 2019