Sequential SEM-EDS, PLM, and MRS microanalysis of individual atmospheric particles: A useful tool for assigning emission sources
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.In this work, the particulate matter (PM) from three different monitoring stations in the Monterrey Metropolitan Area in Mexico were investigated for their compositional, morphological, and optical properties. The main aim of the research was to decipher the different sources of the particles. The methodology involved the ex situ sequential analysis of individual particles by three analytical techniques: scanning electron microscopy-energy dispersive X-ray spectroscopy (SEMEDS), polarized light microscopy (PLM), and micro-Raman spectroscopy (MRS). The microanalysis was performed on samples of total suspended particles. Different morphologies were observed for particles rich in the same element, including prismatic, spherical, spheroidal, and irregular morphologies. The sequential microanalysis by SEM-EDS/PLM/MRS revealed that Fe-rich particles with spherical and irregular morphologies were derived from anthopogenic sources, such as emissions from the metallurgical industry and the wear of automobile parts, respectively. In contrast, Fe-rich particles with prismatic morphologies were associated with natural sources. In relation to carbon (C), the methodology was able to distinguish between the C-rich particles that came from different anthopogenic sources-such as the burning of fossil fuels, biomass, or charcoal-and the metallurgical industry. The optical properties of the Si-rich particles depended, to a greater extent, on their chemical composition than on their morphology, which made it possible to quickly and accurately differentiate aluminosilicates from quartz. The methodology demonstrated in this study was useful for performing the speciation of the particles rich in different elements. This differentiation helped to assign their possible emission sources.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume