Discovering business process simulation models in the presence of multitasking and availability constraints Academic Article in Scopus uri icon

abstract

  • © 2021 The Author(s)Business process simulation is a versatile technique for quantitative analysis of business processes. A well-known limitation of process simulation is that the accuracy of the simulation results is limited by the faithfulness of the process model and simulation parameters given as input to the simulator. To tackle this limitation, various authors have proposed to discover simulation models from process execution logs, so that the resulting simulation models more closely match reality. However, existing techniques in this field make certain assumptions about resource behavior that do not typically hold in practice, including: (i) that each resource performs one task at a time; and (ii) that resources are continuously available (24/7). In reality, resources may engage in multitasking behavior and they work only during certain periods of the day or the week. This article proposes an approach to discover process simulation models from execution logs in the presence of multitasking and availability constraints. To account for multitasking, we adjust the processing times of tasks in such a way that executing the multitasked tasks sequentially with the adjusted times is equivalent to executing them concurrently with the original times. Meanwhile, to account for availability constraints, we use an algorithm for discovering calendar expressions from collections of time-points to infer resource timetables from an execution log. We then adjust the parameters of this algorithm to maximize the similarity between the simulated log and the original one. We evaluate the approach using real-life and synthetic datasets. The results show that the approach improves the accuracy of simulation models discovered from execution logs both in the presence of multitasking and availability constraints.

publication date

  • July 1, 2021