Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
Academic Article in Scopus
-
- Overview
-
- Identity
-
- Additional document info
-
- View All
-
Overview
abstract
-
© 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.In laser powder bed fusion (LPBF), the stability of melt pool dynamics determines the overall quality of a manufactured component. In this work, a numerical model of the LPBF process was developed in order to study and fully understand the behavior of the melt pool dynamics. The numerical model takes into account most of the manufacturing parameters, thermophysical properties, an enhanced thermal conductivity approach, and a volumetric heat source in order to precisely simulate LPBF. This research assumes that the energy emitted by the laser interacts with the metal powder with an absorptivity gradient through the layer thickness in order to calculate the thermal history of the process and the evolution of the melt pool dimensions. The obtained results determined that melt pool dimensions follow a thermal pattern, which is caused by the laser scanning strategy of the LPBF process. A new effective width criterion was proposed in the present research in order to accurately relate both calculated and measured dimensions of the melt pool, reducing the relative error of the model and obtaining data scattering with a standard deviation of ± 7.21 µm and a relative error of 2.92%.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume