Beyond Hyper-Heuristics: A Squared Hyper-Heuristic Model for Solving Job Shop Scheduling Problems
                 
        Academic Article in Scopus
                     
                
        
            
    
    
     
        
    
         
     
    
    -  
- Overview
-  
- Identity
-  
- Additional document info
-  
- View All
-  
Overview
        
            
                    abstract   
                
    - 
    	© 2013 IEEE.Hyper-heuristics (HHs) stand as a relatively recent approach to solving optimization problems. There are different kinds of HHs. One of them deals with how low-level heuristics must be combined to deliver an improved solution to a set of problem instances. Literature commonly refers to them as selection hyper-heuristics. One of their advantages is that the strengths of each heuristic can be fused into a high-level solver. However, one of their drawbacks is that sometimes this generalization scheme does not suffice. Additionally, it is not easy to reuse these HHs since the model cannot be easily tweaked. So, in this work, we develop a hyper-heuristic model with an additional layer of generalization. The rationale behind it is to preserve the general structure of selecting an adequate solver for a particular situation but to use HHs instead of low-level heuristics. We call this model a Squared Hyper-Heuristic (SHH). To validate our proposal, we pursue a four-stage methodology that covers several testing scenarios. Our data reveal that, under proper conditions, our model can outperform the base HHs. Moreover, it is flexible enough to allow for an increased number of layers so that the complexity of the final model can be tuned. Additionally, different kinds of instances can be used to train each stage of the model, thus setting the groundwork for developing a transfer learning approach for hyper-heuristics. 
    
status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    start page   
                
             
            
                    end page   
                
             
            
                    volume