A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
                 
        Academic Article in Scopus
                     
                
        
            
    
    
     
        
    
         
     
    
    -  
- Overview
-  
- Identity
-  
- Additional document info
-  
- View All
-  
Overview
        
            
                    abstract   
                
    - 
    	Copyright © 2022 Lopez-Bernal, Balderas, Ponce and Molina.Currently, the most used method to measure brain activity under a non-invasive procedure is the electroencephalogram (EEG). This is because of its high temporal resolution, ease of use, and safety. These signals can be used under a Brain Computer Interface (BCI) framework, which can be implemented to provide a new communication channel to people that are unable to speak due to motor disabilities or other neurological diseases. Nevertheless, EEG-based BCI systems have presented challenges to be implemented in real life situations for imagined speech recognition due to the difficulty to interpret EEG signals because of their low signal-to-noise ratio (SNR). As consequence, in order to help the researcher make a wise decision when approaching this problem, we offer a review article that sums the main findings of the most relevant studies on this subject since 2009. This review focuses mainly on the pre-processing, feature extraction, and classification techniques used by several authors, as well as the target vocabulary. Furthermore, we propose ideas that may be useful for future work in order to achieve a practical application of EEG-based BCI systems toward imagined speech decoding. 
    
status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    volume