Crystal Plane Impact of ZnFe2O4-Ag Nanoparticles Influencing Photocatalytical and Antibacterial Properties: Experimental and Theoretical Studies
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2022 American Chemical Society.This paper describes the crystal interphase impact of ZnFe2O4-Ag in the photodegradation of Rhodamine B. Prepared ZnFe2O4 nanoparticles (NPs) were deposited with Ag NPs to offer ZnFe2O4-Ag (0-2.5%). An X-ray diffraction peak corresponding to the Ag NPs was detected if the particle content reached about 2.0%, observing multiple crystalline interphases in HR-TEM. Magnetic saturation (Ms) was increased ~160% times for ZnFe2O4-Ag (7.25 to 18.71 emu/g) and ZnFe2O4 (9.62 to 25.09 emu/g) if the temperature is lowered from 298 to 5.0 K; while for Fe3O4 (91.09 to 96.19 emu/g), the Ms increment was just about 5.6%. After analyzing the DFT-Density of State, a decrease of bandgap energy for ZnFe2O4-Ag6 from the influence of the size of Ag cluster was seen. Quantum yield (¿) was 0.60 for ZnFe2O4, 0.25 for ZnFe2O4-Ag (1.0%), 0.70 for ZnFe2O4-Ag (1.5%), 0.66 for ZnFe2O4-Ag (2.0%), and 0.66 for ZnFe2O4-Ag (2.5%), showing that the disposition of Ag NPs (1.5-2.5%) increases the ¿ to >0.60. The samples were used to photo-oxidize RhB under visible light assisted by photopowered Langmuir adsorption. The degradation follows first-order kinetics (k = 5.5 × 10-3 min-1), resulting in a greater k = 2.0 × 10-3 min-1 for ZnFe2O4-Ag than for ZnFe2O4 (or Fe3O4, k = 1.1 × 10-3 min-1). DFT-total energy was used to analyze the intermediates formed from the RhB oxidation. Finally, the ZnFe2O4-Ag exhibits good antibacterial behavior because of the presence of Zn and the Ag components.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume