abstract
- Purpose: A semi-supervised two-step methodology is proposed to obtain a volumetric estimation of COVID-19-related lesions on Computed Tomography (CT) images. Methods: First, damaged tissue was segmented from CT images using a probabilistic active contours approach. Second, lung parenchyma was extracted using a previously trained U-Net. Finally, volumetric estimation of COVID-19 lesions was calculated considering the lung parenchyma masks. Our approach was validated using a publicly available dataset containing 20 CT COVID-19 images previously labeled and manually segmented. Then, it was applied to 295 COVID-19 patients CT scans admitted to an intensive care unit. We compared the lesion estimation between deceased and survived patients for high and low-resolution images. Results: A comparable median Dice similarity coefficient of 0.66 for the 20 validation images was achieved. For the 295 images dataset, results show a significant difference in lesion percentages between deceased and survived patients, with a p-value of 9.1 × 10¿4 in low-resolution and 5.1 × 10¿5 in high-resolution images. Furthermore, the difference in lesion percentages between high and low-resolution images was 10 % on average. Conclusion: The proposed approach could help estimate the lesion size caused by COVID-19 in CT images and may be considered an alternative to getting a volumetric segmentation for this novel disease without the requirement of large amounts of COVID-19 labeled data to train an artificial intelligence algorithm. The low variation between the estimated percentage of lesions in high and low-resolution CT images suggests that the proposed approach is robust, and it may provide valuable information to differentiate between survived and deceased patients.