abstract
- Copyright © Cambridge University Press 2018. This paper presents an overview of the most recent vision-based multi-rotor micro unmanned aerial vehicles (MUAVs) intended for autonomous navigation using a stereoscopic camera. Drone operation is difficult because pilots need the expertise to fly the drones. Pilots have a limited field of view, and unfortunate situations, such as loss of line of sight or collision with objects such as wires and branches, can happen. Autonomous navigation is an even more difficult challenge than remote control navigation because the drones must make decisions on their own in real time and simultaneously build maps of their surroundings if none is available. Moreover, MUAVs are limited in terms of useful payload capability and energy consumption. Therefore, a drone must be equipped with small sensors, and it must carry low weight. In addition, a drone requires a sufficiently powerful onboard computer so that it can understand its surroundings and navigate accordingly to achieve its goal safely. A stereoscopic camera is considered a suitable sensor because of its three-dimensional (3D) capabilities. Hence, a drone can perform vision-based navigation through object recognition and self-localise inside a map if one is available; otherwise, its autonomous navigation creates a simultaneous localisation and mapping problem.