abstract
- © 2018 Association for Computing Machinery.In recent years, evolutionary algorithms have been found to be effective and efficient techniques to train support vector machines (SVMs) for binary classification problems while multiclass problems have been neglected. This paper proposes CMOE-SVM: Cooperative Multi-Objective Evolutionary SVMs for multiclass problems. CMOE-SVM enables SVMs to handle multiclass problems via coevolutionary optimization, by breaking down the original M-class problem into M simpler ones, which are optimized simultaneously in a cooperative manner. Furthermore, CMOE-SVM can explicitly maximize the margin and reduce the training error (the two components of the SVM optimization), by means of multi-objective optimization. Through a comprehensive experimental evaluation using a suite of benchmark datasets, we validate the performance of CMOE-SVM. The experimental results, supported by statistical tests, give evidence of the effectiveness of the proposed approach for solving multiclass classification problems.