Friction and Wear of Metals under Micro-abrasion, Wet and Dry Sliding Conditions
Academic Article in Scopus
-
- Overview
-
- Identity
-
- Additional document info
-
- View All
-
Overview
abstract
-
© 2020, ASM International.This work aims to characterize and compare the coefficient of friction (CoF) and wear rates of some metallic materials (AISI 6061-T6 alloy, AISI 316 L stainless steel and ASTM F1537 CoCrMo alloy) under different wear modes, namely, micro-abrasion abrasion (rolling and mixed rolling/grooving abrasion), and wet and dry sliding abrasion. The wear modes were achieved by conducting testing under muddy environment at different SiC abrasive particles concentration and wet and dry conditions at three different loads (1, 2 and 3 N) using an instrumented micro-abrasion tester. Wear volumes were measured by optical profilometry to estimate wear rates, while wear patterns were visualized in detail by SEM. CoF, wear rate and mode results for all materials and conditions are reported and discussed. Wear modes were found to have a considerable effect on CoF and wear rate for the materials. Pure rolling abrasion generated the highest wear rates for all materials. Mixed rolling abrasion/grooving produced higher CoFs, but lower wear rates than those produced by pure rolling abrasion. Wet sliding promoted the highest CoFs for AISI 316L SS and AISI 6061-T6 meanwhile dry sliding generated the lowest CoFs and wear rates.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency
start page
end page
volume