A data analytics approach to contrast the performance of teaching (only) vs. research professors Academic Article in Scopus uri icon

abstract

  • © 2020, Springer-Verlag France SAS, part of Springer Nature.This research article presents a study to compare the teaching performance of teaching-only versus teaching-and-research professors at higher education institutions. It is a common belief that, generally, teaching professors outperform research professors in teaching-and-research universities according to student perceptions reflected in student surveys. This case study presents experimental evidence that shows this is not always the case and that, under certain circumstances, it can be the contrary. The case study is from Tecnologico de Monterrey (Tec), a teaching-and-research, private university in Mexico that has developed a research profile during the last two decades using a mix of teaching-only and teaching-and-research faculty members; during this time period, the university has had a growing ascendancy in world university rankings. Data from an institutional student survey called the ECOA was used. The data set contains more than 118,000 graduate and undergraduate courses for 5 semesters (January 2017 to May 2019). The results presented were derived from statistical to data mining methods, including Analysis of Variance and Logistic Regression, that were applied to this data set of more than nine thousand professors who taught those courses. The results show that teaching-and-research professors perform better or at least the same as teaching-only professors. The differences found in teaching with respect to attributes like professors¿ gender, age, and research level are also presented.

publication date

  • December 1, 2020