Cost-effective 3D-printed-enabled fluidic electrochemical sensing platform for quantitative electroanalytical applications Academic Article in Scopus uri icon

abstract

  • © 2021 The Author(s).3D-printing is an open access manufacturing technology that facilitates prototyping of economical devices for scientific purposes. Coupled with the emergence of commercially available cost-efficient screen-printed electrodes (SPEs), 3D-printing has enabled the fabrication of cost-effective fluidic sensing platforms with removable/disposable electrodes. However, quantitative electrochemical detection of analytes in 3D-printed flow-cells integrated with SPEs is yet to be achieved. In this work, the successful implementation of a cost-effective 3D-printed-enabled fluidic electrochemical sensing platform (3DP-FESP) for the quantitative detection of dopamine (DA) in the presence of uric acid (UA), and ascorbic acid (AA) is demonstrated. The 3DP-FESP consists of a reversibly sealed 3D-printed flow-cell integrated with removable SPEs electrochemically activated to increase sensitivity towards DA. The flow-cell was fabricated through fused deposition modeling (FDM) 3D-printing and Embedded SCAffold RemovinG Open Technology (ESCARGOT). The 3DP-FESP was characterized to determine its optimal flow rate and ensure enhancement of the quantitative performance of the SPEs under flow conditions. As a result, the performance of our 3DP-FESP (flow conditions) was better than only activated SPEs (stagnant conditions) for DA detection in the presence of interferents with LODs of 0.05 ¿M and 0.16 ¿M, respectively. This demonstrates the potential of our cost-effective 3DP-FESP for enhanced quantitative electroanalytical applications.

publication date

  • November 1, 2021