A flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep reinforcement learning
                 
        Academic Article in Scopus
                    
                
        
            
    
    
     
        
    
         
     
    
    -  
 
            - Overview
 
            -  
 
            - Identity
 
            -  
 
            - Additional document info
 
            -  
 
    - View All
 
    -  
 
        
        
            Overview
        
            
                    abstract   
                
    - 
    	© 2022 Elsevier LtdDistributed Denial-of-Service (DDoS) attacks are difficult to mitigate with existing defense tools. Fortunately, it has been demonstrated that Software-Defined Networking (SDN) with machine learning (ML) and deep learning (DL) techniques has a high potential to handle these threats effectively. However, although there are many SDN-based solutions for detecting DDoS attacks, only a few contain mitigation strategies. Additionally, most previous studies have focused on solving high-rate DDoS attacks. For the time being, recent slow-rate DDoS threats are hard to detect and mitigate. In this work, we propose a modular, flexible, and scalable SDN-based framework that integrates a DL-based intrusion detection system (IDS) and a deep reinforcement learning (DRL)-based intrusion prevention system (IPS) to address slow-rate DDoS threats. We incorporated scalability features into this framework, such as data-plane-based traffic monitoring and traffic flow sampling. Moreover, we have designed a lightweight DRL-based IPS to provide rapid mitigation responses. Furthermore, to evaluate the framework, we deployed a data center network using Mininet, Open Network Operating System (ONOS) controller, and Apache Web server. Next, we performed extensive experiments varying the number of attackers and the rate of attack connections. The proposed IDS achieved an average detection rate of 98%, with a flow sampling rate of 30%. In addition, IPS timely mitigated slow-rate DDoS with 100% of success for a few attackers. Taken together, these results show that the proposed framework provides effective responses to malicious and legitimate connections. 
    
 
                
             
            
                    
                
             
            
                    status   
                
             
            
                    publication date   
                
             
            
                    published in   
                
             
         
         
        
        
            Identity
        
            
                    Digital Object Identifier (DOI)   
                
             
         
         
        
        
            Additional document info
        
            
                    has global citation frequency   
                
             
            
                    volume