A Primary Study on Hyper-Heuristics Powered by Artificial Neural Networks for Customising Population-based Metaheuristics in Continuous Optimisation Problems
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2022 IEEE.Metaheuristics (MHs) are proven powerful algorithms for solving non-linear optimisation problems over discrete, continuous, or mixed domains. Applications have ranged from basic sciences to applied technologies. Nowadays, the literature contains plenty of MHs based on exceptional ideas, but often, they are just recombining elements from other techniques. An alternative approach is to follow a standard model that customises population-based MHs, utilising simple heuristics extracted from well-known MHs. Different approaches have explored the combination of such simple heuristics, generating excellent results compared to the generic MHs. Nevertheless, they present limitations due to the nature of the metaheuristic used to study the heuristic space. This work investigates a field of action for implementing a model that takes advantage of previously modified MHs by learning how to boost the performance of the tailoring process. Following this reasoning, we propose a hyper-heuristic model based on Artificial Neural Networks (ANNs) trained with processed sequences of heuristics to identify patterns that one can use to generate better MHs. We prove the feasibility of this model by comparing the results against generic MHs and other approaches that tailor unfolded MHs. Our results evidenced that the proposed model outperformed an average of 84 % of all scenarios; in particular, 89 % of basic and 77 % of unfolded approaches. Plus, we highlight the configurable capability of the proposed model, as it shows to be exceptionally versatile in regards to the computational budget, generating good results even with limited resources.
status
publication date
Identity
Digital Object Identifier (DOI)
Additional document info
has global citation frequency