Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bioaccessibility, intestinal permeability, and antioxidant capacity
Academic Article in Scopus
Overview
Identity
Additional document info
View All
Overview
abstract
© 2021 Elsevier LtdExtruded polyphenol-rich by-products like mango bagasse (MB) could be used to manufacture functional confections. However, few reports have assessed the extrusion impact on MB polyphenols within a food matrix. This research aimed to evaluate the impact of extrusion on the bioaccessibility, intestinal permeability, and antioxidant capacity of phenolic compounds (PC) from non-extruded and extruded MB-added confections (EMBC and MBC, respectively). The inhibition of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radicals and in silico approaches were used to evaluate the antioxidant capacity. MBC displayed the highest gastric bioaccessibility (%) of xanthones and flavonoids, whereas selective release of gallic acid, mangiferin, and quercetin glucoside was shown for EMBC. Lower PC¿ apparent permeability coefficients were found in EMBC compared to MB (0.11 to 0.44-fold change, p < 0.05). EMBC displayed the highest antioxidant capacity by the DPPH method for the non-digestible fraction, being mangiferin the highest in silico contributor (-4 kcal/mol). Our results showed that the extrusion process helps release selective phenolics from MBC, which increases their bioaccessibility and intestinal permeability.
status
publication date
published in
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional document info
has global citation frequency
volume