abstract
- © 2017 IEEE.Hyper-heuristics have emerged as an important strategy for combining the strengths of different heuristics into a single method. Although hyper-heuristics have been found to be successful in many scenarios, little attention has been paid to the subsets of heuristics that these methods manage and apply. In several cases, heuristics can interfere with each other and can be harmful for the search. Thus, obtaining information about the differences among heuristics, and how they contribute to the search process is very important. The main contribution of this paper is an automatic heuristic-filtering process that allows hyper-heuristics to exclude heuristics that do not contribute to improving the solution. Based on some previous works in feature selection, two methods are proposed that rank heuristics and sequentially select only suitable heuristics in a hyper-heuristic framework. Our experiments over a set of Constraint Satisfaction Problem instances show that a hyper-heuristic with only selected heuristics obtains significantly better results than a hyper-heuristic containing all heuristics, in terms of running times. In addition, the success rate of solving such instances is better for the hyper-heuristic with the suitable heuristics than for the hyper-heuristic without our proposed filtering process.